SPR gene

sepiapterin reductase (7,8-dihydrobiopterin:NADP+ oxidoreductase)

Normal Function

The *SPR* gene provides instructions for making the sepiapterin reductase enzyme. This enzyme is involved in the last of three steps in the production of a molecule called tetrahydrobiopterin (BH4). Other enzymes help carry out the first and second steps in this process. The sepiapterin reductase enzyme converts a molecule called 6-pyruvoyl-tetrahydropterin to tetrahydrobiopterin. Tetrahydrobiopterin helps process several building blocks of proteins (amino acids), and is involved in the production of chemicals called neurotransmitters, which transmit signals between nerve cells in the brain. Specifically, tetrahydrobiopterin is involved in the production of two neurotransmitters called dopamine and serotonin. Among their many functions, dopamine transmits signals within the brain to produce smooth physical movements, and serotonin regulates mood, emotion, sleep, and appetite.

Health Conditions Related to Genetic Changes

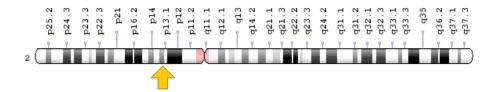
dopa-responsive dystonia

At least four mutations in the *SPR* gene have been found to cause dopa-responsive dystonia. This condition is characterized by a pattern of involuntary muscle contractions (dystonia), tremors, and other uncontrolled movements and usually responds to treatment with a medication called L-Dopa. Dopa-responsive dystonia can be caused by mutations in one copy or both copies of the *SPR* gene in each cell. These mutations lead to the production of a sepiapterin reductase enzyme with reduced or absent function. In most parts of the body, there are alternate pathways that do not use sepiapterin reductase for the production of tetrahydrobiopterin, but these processes do not occur in the brain. Therefore, people with sepiapterin reductase deficiency have a lack of tetrahydrobiopterin in the brain, which affects the production of dopamine and serotonin. The lack of these two neurotransmitters causes the movement problems and other characteristic features of dopa-responsive dystonia.

sepiapterin reductase deficiency

More than a dozen mutations in the *SPR* gene have been found to cause sepiapterin reductase deficiency, a condition characterized by progressive problems with movement. Sepiapterin reductase deficiency results when two copies of the *SPR* gene are mutated in each cell. These mutations include changes that replace amino acids; alter the way the gene's instructions are pieced together to produce the

enzyme; or result in a shortened, nonfunctional enzyme. All these mutations lead to the production of enzymes with reduced or no function. A common mutation in affected individuals that replaces the amino acid arginine with the amino acid glycine at position 150 in the enzyme (written as Arg150Gly or R150G) prevents the production of any sepiapterin reductase.


SPR gene mutations disrupt the production of sepiapterin reductase. Most SPR gene mutations result in an enzyme with little or no function. A nonfunctional sepiapterin reductase leads to a lack of tetrahydrobiopterin and a decrease in the production of dopamine and serotonin in the brain. The shortage of these neurotransmitters causes the movement abnormalities and other features of sepiapterin reductase deficiency.

Sepiapterin reductase deficiency is more severe than dopa-responsive dystonia likely because both copies of the *SPR* gene are mutated, which leads to a more severe enzyme shortage than in dopa-responsive dystonia, in which only one copy of the gene has a mutation.

Chromosomal Location

Cytogenetic Location: 2p13.2, which is the short (p) arm of chromosome 2 at position 13.2

Molecular Location: base pairs 72,887,383 to 72,892,160 on chromosome 2 (Homo sapiens Annotation Release 108, GRCh38.p7) (NCBI)

Credit: Genome Decoration Page/NCBI

Other Names for This Gene

- SDR38C1
- sepiapterin reductase
- short chain dehydrogenase/reductase family 38C, member 1
- SPRE HUMAN

Additional Information & Resources

Educational Resources

 Neuroscience (second edition, 2001): The Biogenic Amines https://www.ncbi.nlm.nih.gov/books/NBK11035/

GeneReviews

 Sepiapterin Reductase Deficiency https://www.ncbi.nlm.nih.gov/books/NBK304122

Scientific Articles on PubMed

PubMed

https://www.ncbi.nlm.nih.gov/pubmed?term=%28%28sepiapterin+reductase%5BTIAB%5D%29+OR+%28SPR%5BTIAB%5D%29%29+AND+%28%28Genes%5BMH%5D%29+OR+%28Genetic+Phenomena%5BMH%5D%29%29+AND+english%5Bla%5D+AND+human%5Bmh%5D+AND+%22last+720+days%22%5Bdp%5D

OMIM

 SEPIAPTERIN REDUCTASE http://omim.org/entry/182125

Research Resources

- Atlas of Genetics and Cytogenetics in Oncology and Haematology http://atlasgeneticsoncology.org/Genes/GC_SPR.html
- ClinVar https://www.ncbi.nlm.nih.gov/clinvar?term=SPR%5Bgene%5D
- HGNC Gene Family: Short chain dehydrogenase/reductase superfamily http://www.genenames.org/cgi-bin/genefamilies/set/743
- HGNC Gene Symbol Report http://www.genenames.org/cgi-bin/gene_symbol_report?q=data/ hgnc_data.php&hgnc_id=11257
- NCBI Gene https://www.ncbi.nlm.nih.gov/gene/6697
- UniProt http://www.uniprot.org/uniprot/P35270

Sources for This Summary

- Abeling NG, Duran M, Bakker HD, Stroomer L, Thöny B, Blau N, Booij J, Poll-The BT. Sepiapterin reductase deficiency an autosomal recessive DOPA-responsive dystonia. Mol Genet Metab. 2006 Sep-Oct;89(1-2):116-20. Epub 2006 May 2.
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16650784
- Arrabal L, Teresa L, Sánchez-Alcudia R, Castro M, Medrano C, Gutiérrez-Solana L, Roldán S, Ormazábal A, Pérez-Cerdá C, Merinero B, Pérez B, Artuch R, Ugarte M, Desviat LR. Genotypephenotype correlations in sepiapterin reductase deficiency. A splicing defect accounts for a new phenotypic variant. Neurogenetics. 2011 Aug;12(3):183-91. doi: 10.1007/s10048-011-0279-4. Epub 2011 Mar 24.
 - Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/21431957
- Bonafé L, Thöny B, Penzien JM, Czarnecki B, Blau N. Mutations in the sepiapterin reductase gene cause a novel tetrahydrobiopterin-dependent monoamine-neurotransmitter deficiency without hyperphenylalaninemia. Am J Hum Genet. 2001 Aug;69(2):269-77. Epub 2001 Jul 6. Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11443547
 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1235302/
- Ikemoto K, Suzuki T, Ichinose H, Ohye T, Nishimura A, Nishi K, Nagatsu I, Nagatsu T. Localization of sepiapterin reductase in the human brain. Brain Res. 2002 Nov 8;954(2):237-46.
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/12414107
- Longo N. Disorders of biopterin metabolism. J Inherit Metab Dis. 2009 Jun;32(3):333-42. doi: 10.1007/s10545-009-1067-2. Epub 2009 Feb 9. Review. Erratum in: J Inherit Metab Dis. 2009 Jun; 32(3):457.
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/19234759
- OMIM: SEPIAPTERIN REDUCTASE http://omim.org/entry/182125
- Steinberger D, Blau N, Goriuonov D, Bitsch J, Zuker M, Hummel S, Müller U. Heterozygous mutation in 5'-untranslated region of sepiapterin reductase gene (SPR) in a patient with doparesponsive dystonia. Neurogenetics. 2004 Sep;5(3):187-90. Epub 2004 Jul 6. Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15241655
- Zorzi G, Redweik U, Trippe H, Penzien JM, Thöny B, Blau N. Detection of sepiapterin in CSF of patients with sepiapterin reductase deficiency. Mol Genet Metab. 2002 Feb;75(2):174-7.
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11855937

Reprinted from Genetics Home Reference:

https://ghr.nlm.nih.gov/gene/SPR

Reviewed: May 2012

Published: March 21, 2017

Lister Hill National Center for Biomedical Communications U.S. National Library of Medicine National Institutes of Health Department of Health & Human Services